INSULIN [I-125] IRMA KIT
(REF: RK-400CT)

The insulin 125I assay system provides the quantitative determination of insulin in human serum. Insulin can be assayed in the range 0-500 µIU/mL (0-17.5 ng/mL). Each kit contains materials sufficient for 100 assay tubes, permitting the construction of one standard curve and assay of 42 unknowns and 1 control in duplicate.

Introduction

The insulin is a light polypeptide hormone with molecular weight 6000. It is synthesized in the beta cells of the pancreas from the precursor proinsulin. Proinsulin enzymatically splits into insulin and C-peptide that are stored in the pancreas and release from there to equimolar quantities into the blood system. Insulin consists of two polypeptide chains: A (21 amino acids) and B (30 amino acids) connected to each other by two disulfid bridges. While in the amino acid sequence of C-peptide great differences can be observed in the case of various mammals, in insulin these differences are insignificant: e.g. porcine and bovine insulin only differ from human insulin in one and three amino acids, respectively.

Insulin is an important metabolic hormone that has several direct and indirect effects on the organism. Its general influence is that it stimulates the synthesis and accumulation of macromolecules and in the regulation of metabolic processes. Insulin increases the rate of glucose transport through the cell membranes, helping the adhesion of other monosaccharides, amino acids, potassium and magnesium ions into the cells. Insulin promotes the utilization and oxidation of glucose, glycogenesis, lipogenesis, as well as the formation of ATP, DNA and RNA. Insulin stimulates these processes in the muscles, the liver and fatty tissues, but not in blood cells and the brain, does not stimulate glucose reabsorption in renal tubules and on the intestinal mucosa. The symptoms of diabetes mellitus can be attributed to the inappropriate insulin response to glucose concentration. While in the case of unambiguous diabetes reduced insulin response is observed, in various early stages of diabetes the insulin level of the patients may be normal or even high, and increase of various degrees can be found in stimulation tests. The fasting hyperglycaemia of not overweight patients is usually accompanied by normal circulatory insulin level, while in obese patients this level is high, in proportion of overweight.

Principle of method

The technology uses two high affinity monoclonal antibodies in an immunoradiometric assay (IRMGA) system. The 125I labeled signal-antibody binds to an epitope of the Insulin molecule spatially different from that recognized by the biotin-capture-antibody. The two antibodies react simultaneously with the antigen present in standards or samples, which leads to the formation of a capture antibody - antigen - signal antibody complex, also referred to as a "sandwich".

During a 2-hour incubation period immunocomplex is immobilized to the reactive surface of streptavidin-coated test tubes. Reaction mixture is then discarded, test tubes washed exhaustively, and the radioactivity is measured in a gamma counter.

The concentration of antigen is directly proportional to the radioactivity measured in test tubes. By constructing a calibration curve plotting binding values against a series of calibrators containing known amount of Insulin, the unknown concentration of insulin in patient samples can be determined.

Contents of the kit

1. 1 bottle of TRACER, Ready to use. 21 mL per vial, containing < 980 kBq 125I-labeled and capture antibody in buffer with red dye and 0.1 % NaNO$_3$.
2. 6 vials of STANDARDS (S0-S5), lyophilized. 1.0 mL each, in equine serum with 0.1% NaNO$_3$.
3. 1 vial of CONTROL SERUM, lyophilized. 1.0 mL human serum with 0.1% NaNO$_3$.
4. 2 boxes of COATED TUBES, Ready to use. 2x50 reactive test tubes, 12x75 mm, packed in plastic boxes.
5. 1 bottle of WASH BUFFER CONCENTRATE (20 mL), containing 0.2% NaN$_3$. See Preparation of reagents.

Quality certificate

Pack leaflet

Materials, tools and equipment required

Round bottom polystyrene or polycrylonaryne assay tubes, about 12 x 75 mm, precision pipettes (50 µl, 100 µl and 500 µl), vortex mixer, orbital shaker >400 RPM, gamma counter

Recommended tools and equipment

repeating pipette

Specimen collection and storage

Serum samples can be prepared according to common procedures used routinely in clinical laboratory practice. Samples can be stored at 2-8 °C if the assay is carried out within 48 hours, otherwise aliquots should be prepared and stored deep frozen (-20°C). Frozen samples should be thawed and thoroughly mixed before assay. Repeated freezing and thawing should be avoided. Do not use lipemic, hemolyzed or turbid specimens.

Preparation of reagents, storage

Store the reagents between 2-8°C after opening. At this temperature each reagent (except reconstituted standard and control) is stable until expiry date. The actual expiry date is given on the package label and in the quality certificate.

Add the wash buffer concentrate (20 mL) to 1000 mL distilled water to obtain 1020 mL wash solution. Upon dilution store at 2-8°C until expiration.

Add 1.0 mL distilled water to the lyophilised standard and control serum, and mix gently with shaking or vortexing (foaming should be avoided). Ensure that complete dissolution is achieved, and allow the solution to equilibrate at room temperature for at least 20 minutes.

For repeated use the rest of reagent can be stored at -20 °C for two months.

CAUTION! Equilibrate all reagents and serum samples to room temperature. Mix all reagents and samples thoroughly before use. Avoid excessive foaming.

Assay procedure

(For a quick guide, refer to Table 1.)

1. Equilibrate reagents & samples to room temperature before use.
2. Label coated tubes in duplicate for each standard, control serum & samples.
3. Homogenize all reagents & samples by gentle mixing to avoid foaming.
4. Pipette 100 µl of standards, control & samples into the properly labeled tubes. Use rack to hold the tubes. Do not touch or scratch the inner bottom of the tubes with pipette tip.
5. Pipette 200 µl of tracer into each tube. (Set aside 2 tubes for total counts.)
6. Fix the test tube rack firmly onto the shaker plate. Turn on the shaker and adjust an adequate speed so that liquid is constantly rotating or shaking in each tube. (min. 600 rpm recommended)
7. Incubate tubes for 2 hours, shaking at room temperature.
8. Add 2.0 mL of diluted wash buffer to each tube. Decant the supernatant from all tubes by the inversion of the rack. In the upside down position place the rack on an absorbent paper for 2 minutes.
9. Return the tube-rack to an upright position, and repeat step-8 two more times.
10. Count each tube for at least 60 seconds in a gamma counter.
11. Calculate the Insulin concentrations.

Calculation of results

The calculation is illustrated using representative data. The assay data collected should be similar to those shown in Table 2.
Calculate the average count per minute (cpm) for each pair of assay tubes. Calculate the normalized percent binding for each standard, control & sample respectively by using the following equation:

\[
B/T(\%) = \frac{S_{150} / C \cdot M_1 \cdot (cpm) \cdot S_{80}(cpm)}{T(cpm)}
\]

Using logarithmic graph paper plot B/T (%) for each standard versus the corresponding concentration of insulin. Determine the Insulin concentration of the control & unknown samples by interpolation from the standard curve.

Automated data processing systems are also applicable.

Typical assay data

<table>
<thead>
<tr>
<th>Tubes</th>
<th>Count cpm</th>
<th>Mean cpm</th>
<th>B/T %</th>
<th>µIU/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>384407</td>
<td>380750</td>
<td>379270</td>
<td>291475</td>
</tr>
<tr>
<td>S0</td>
<td>141</td>
<td>114</td>
<td>117</td>
<td>124</td>
</tr>
<tr>
<td>S1</td>
<td>497</td>
<td>470</td>
<td>483</td>
<td>484</td>
</tr>
<tr>
<td>S2</td>
<td>1663</td>
<td>1662</td>
<td>1624</td>
<td>1650</td>
</tr>
<tr>
<td>S3</td>
<td>9028</td>
<td>8961</td>
<td>8975</td>
<td>8988</td>
</tr>
<tr>
<td>S4</td>
<td>44420</td>
<td>43739</td>
<td>44724</td>
<td>44294</td>
</tr>
<tr>
<td>S5</td>
<td>173001</td>
<td>167052</td>
<td>167520</td>
<td>169191</td>
</tr>
<tr>
<td>C</td>
<td>6708</td>
<td>6601</td>
<td>6724</td>
<td>6678</td>
</tr>
</tbody>
</table>

Typical standard curve

Characterization of assay

Calibration

Standards are calibrated against the international reference standard NIBSC 66/304

Analytical sensitivity

The analytical sensitivity of this assay is 0.6 µIU/mL calculated from the 2xSD value at zero std and from the slope of the curve at zero dose.

Expected values

It is highly recommended that each laboratory determine its own normal range. Fasting patients with normal blood glucose and presumably healthy blood donors were evaluated. Values presented below should be only considered as a guide.

<table>
<thead>
<tr>
<th>No. of samples</th>
<th>Median (µIU/mL)</th>
<th>95% central range (µIU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasting</td>
<td>100</td>
<td>5.15</td>
</tr>
<tr>
<td>Postprandial</td>
<td>120</td>
<td>14.15</td>
</tr>
</tbody>
</table>

The results obtained should only be interpreted in the context of the overall clinical picture. None of in vitro diagnostic kits can be used as the one and only proof of any disease or disorder.

Conversion of SI units can be performed according to the following formula:

\[
1 \muIU/mL = 5.99 \text{ pmol/l}
\]

Specificity

Cross-reactivity with human proinsulin is 40%. Based on the ratio proinsulin/insulin under normal physiologic conditions (about 5 %), the potential error contributed by proinsulin must be less than 2 %.

Intra-assay precision

<table>
<thead>
<tr>
<th>mean µIU/mL</th>
<th>CV %</th>
<th>replicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>4.2</td>
<td>15</td>
</tr>
<tr>
<td>13.8</td>
<td>2.4</td>
<td>15</td>
</tr>
<tr>
<td>45</td>
<td>0.8</td>
<td>15</td>
</tr>
<tr>
<td>89</td>
<td>4.4</td>
<td>15</td>
</tr>
<tr>
<td>149</td>
<td>0.8</td>
<td>15</td>
</tr>
</tbody>
</table>

Inter-assay precision

<table>
<thead>
<tr>
<th>mean µIU/mL</th>
<th>CV %</th>
<th>runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>17.1</td>
<td>16</td>
</tr>
<tr>
<td>20.9</td>
<td>4.5</td>
<td>16</td>
</tr>
<tr>
<td>40.5</td>
<td>2.4</td>
<td>16</td>
</tr>
<tr>
<td>65.0</td>
<td>2.4</td>
<td>16</td>
</tr>
<tr>
<td>102.1</td>
<td>3.2</td>
<td>16</td>
</tr>
<tr>
<td>152.6</td>
<td>3.2</td>
<td>16</td>
</tr>
</tbody>
</table>

High Dose Hook Effect

No high dose Hook-effect was observed up to insulin concentration as high as 2500 µIU/mL.

Recovery

Recovery was defined as the measured increase expressed as per cent of expected increase upon spiking serum samples with known amount of Insulin. The average recovery for 6 serum samples spiked with Insulin at 3 levels each was 95.1% ± 6.4%.

Linearity

32 individual serum samples were diluted two-fold with zero-standard and measured according to kit protocol. The following equation obtained for measured (Y) versus expected (X) concentration demonstrates the good linearity:

\[
Y = 0.9182X – 0.5741 \quad R^2 = 0.9933
\]

Additional information

Components from various lots or from kits of different manufacturers should not be mixed.

Precaution

Radioactivity

This product contains radioactive material. It is the responsibility of the user to ensure that local regulations or code of practice related to the handling of radioactive materials are satisfied.

Biohazard

Human blood products used in the kit have been obtained from healthy human donors. They were tested individually by using approved methods (EIA, enzyme immunoassay), and were found to be negative for the presence of antibodies to Human Immunodeficiency Virus (Anti-HIV/1,2), Hepatitis-C antibody (anti-HCV), Treponema antibody and Hepatitis-B surface Antigen (HBsAg). Care should always be taken when handling human specimens to be tested with diagnostic kits. Even if the subject has been tested, no method can offer complete assurance that infectious agents are absent. Human blood samples should therefore be handled as potentially infectious materials. All animal products and derivatives have been collected from healthy animals. Nevertheless, components containing animal substances should be treated as potentially infectious materials.

Chemical hazard

Components contain sodium azide as an antimicrobial agent. Dispose of waste by flushing with copious amount of water to avoid build-up of explosive metallic azides in copper and lead plumbing. The total azide present in each pack is 68 mg.

Storage and shelf life

Store this product at a temperature of 2-8°C.

Shelf-life: 67 days from availability.

Precaution

Radioactivity

This product contains radioactive material. It is the responsibility of the user to ensure that local regulations or code of practice related to the handling of radioactive materials are satisfied.

Biohazard

Human blood products used in the kit have been obtained from healthy human donors. They were tested individually by using approved methods (EIA, enzyme immunoassay), and were found to be negative for the presence of antibodies to Human Immunodeficiency Virus (Anti-HIV/1,2), Hepatitis-C antibody (anti-HCV), Treponema antibody and Hepatitis-B surface Antigen (HBsAg). Care should always be taken when handling human specimens to be tested with diagnostic kits. Even if the subject has been tested, no method can offer complete assurance that infectious agents are absent. Human blood samples should therefore be handled as potentially infectious materials. All animal products and derivatives have been collected from healthy animals. Nevertheless, components containing animal substances should be treated as potentially infectious materials.

Chemical hazard

Components contain sodium azide as an antimicrobial agent. Dispose of waste by flushing with copious amount of water to avoid build-up of explosive metallic azides in copper and lead plumbing. The total azide present in each pack is 68 mg.

Storage and shelf life

Store this product at a temperature of 2-8°C.

Shelf-life: 67 days from availability.